Tampilkan postingan dengan label sains. Tampilkan semua postingan
Tampilkan postingan dengan label sains. Tampilkan semua postingan

Siapakah Penemu Bom Atom ?

Kebanyakan orang menyangka bawah Albert Einstein adalah penemu bom atom, padahal penemunya adalah Julius Robert Oppenheimer. Nama Julius Robert Oppenheimer akan selalu diingat dan dipuji dengan ciptaannya yaitu alat penghancur yang dahsyat pada tahun 1940an, Bom Atom. Saat musim panas 1945 bom tsb dijatuhkan di dua kota di Jepang yaitu Hiroshima dan Nagasaki yang membuat Jepang langsung menyerah.

Oppenheimer dilahirkan di New York City tanggal 22 April 1904. Dia besar di Ney York dan masuk sekolah budaya etnis disana. Awalnya, dia tertarik pada bidang bahasa dan ingin mempelajari salah satunya dgn cepat. Selain itu, dia juga sangat tertarik pada bidang matematika dan ilmu pengetahuan, dan secara serius lebih menekuninya dibanding kawan sebayanya.

Setelah lulus dari Harvard University tahun 1925, Oppenheimer belajar di Cambridge University di Inggris dan mengejar gelar PhD di Jerman. Dia kembali ke Amerika Serikat tahun 1929 dan mulai mengajar di University of California di Berkeley dan California Institute of Technologi.

Oppenheimer sangat khawatir dengan bangkitnya kekuatan fasisme di tahun 1930an dan berusaha keras menentangnya. Tahun 1939, ketika Amerika Serikat mengetahui bahwa Jerman telah berhasil memisahkan inti atom, yang berakibat NAZI dapat mengembangkan senjata ampuh secara luar biasa.

Presiden Roosevelt segera mendirikan Proyek Manhattan tahun 1941 untuk menandingi Jerman. Di bulan Juli 1942, Robert Oppenheimer ditunjuk sebagai direkturnya. Oppenheimer mendirikan markas penelitian untuk mengembangkan bom atom dan jenis senjata lain di Los Alamos, New Mexico. Sementara, penelitian lain juga dilakukan di Columbia University, University of Chicago, dan di Oak Ridge, Tennessee.

Oppenheimer mengundang para ahli fisika berpengalaman ke Los Alamos untuk bekerja sama menciptakan bom atom. Akhirnya Oppenheimer menangani satu tim ahli yang terdiri dari 3.000 orang lebih. Tanggal 16 Juli 1945, Oppenheimer menyaksikan ledakan pertama bom atom di gurun New Mexico, dan beberapa orang mengatakan hal inilah yang merubah sejarah dunia selamanya. Jarak sebulan setelah percobaan, dua bom atom dijatuhkan di dua kota di Jepang. Sehingga Jepang menyerah pada tanggal 10 Agustus 1945.

Setelah perang usai, Oppenheimer memimpin Komisi Energi Atom Amerika Serikat. Ketika Presiden Truman menyetujui program pengembangan bom hidrogen yang tingkatannya lebih dahsyat lagi, Oppenheimer menentangnya. Namun suhu politik saat itu memanas dan menekannya.

Tanggal 21 Desember 1953, Oppenheimer diadili karena tuduhan melakukan penghianatan dengan mata-mata Soviet dan juga sikap menentangnya dalam pembuatan bom hidrogen. Meski akhirnya tuduhannya tidak terbukti, akses keamanan yang dimilikinya dicabut serta kontraknya sebagai penasehat bagi Komisi Energi Atom diakhiri.

Tahun 1963, Presiden Lyndon B. Johnson malah memberi penghargaan kepada Oppenheimer berupa Enrico Fermi Award dari Komisi Energi Atom. Terakhir Oppenheimer mengajar di Princeton University dan pensiun tahun 1966. Setahun kemudian dia meninggal dunia karena kanker tenggorokan.


Penemu Bom Atom bukanlah Albert Einsten, tetapi Oppenheimer, Oppenheimer hanya menggunakan teori relativitas sebagai inspirasi. Banyak sekali dari kita yang salah kaprah bahwa Albert Einsteinlah pencipta bom atom.

Kerangka Acuan, titik acuan, Kedudukan, Jarak dan Perpindahan

Kerangka Acuan

Apabila kita mengukur posisi, jarak atau kelajuan suatu benda maka kita berpatokan pada suatu kerangka acuan. Misalnya ketika saya berada di atas mobil yang bergerak dengan laju 60 km/jam, sebenarnya saya sedang bergerak di atas permukaan bumi, sehingga kelajuan mobil tersebut berpatokan pada permukaan bumi sebagai kerangka acuan. Atau ketika saya berada di dalam kereta api yang bergerak dengan kelajuan 60 km/jam, saya melihat seorang yang berjalan ke arah saya, misalnya dengan kelajuan 5 km/jam. Laju orang yang berjalan tersebut sebenarnya ditetapkan dengan berpatokan pada kereta api sebagai kerangka acuan, sedangkan laju kereta sebesar 60 km/jam berpatokan pada permukaan bumi sebagai kerangka acuan. Apabila orang tersebut berjalan searah dengan kereta api maka kelajuan orang tersebut 65 km/jam terhadap permukaan bumi sebagai kerangka acuan. Dalam kehidupan sehari-hari, ketika menyebutkan kelajuan suatu gerak benda, maksud kita sebenarnya terhadap permukaan bumi sebagai kerangka acuannya, hanya hal tersebut jarang dikatakan.

Kedudukan alias posisi

Kedudukan yang dimaksudkan di sini tidak sama dengan kata kedudukan yang digunakan dalam kehidupan sehari-hari. “Ayah saya punya pangkat dankedudukan”… bukan seperti ini. Arti “kedudukan” dalam fisika sedikit berbeda.

Dalam fisika, kedudukan menyatakan posisi atau letak suatu benda (atau manusia) pada suatu saat tertentu terhadap suatu titik acuan. Misalnya sekarang anda berada di rumah. Jika satu jam kemudian anda berada di sekolah, maka kedudukan atau posisimu sudah berubah.

Untuk lebih memahami konsep titik acuan, kedudukan, posisi, jarak dan perpindahan, pelajari pembahasan soal di bawah ini :

Setelah mengeluarkan mobil dari garasi dan menyalakan mesin, ayah mengendarai mobil ke arah utara sejauh 100 meter. Gambarkan perjalanan ayah dalam sumbu koordinat…

Dalam fisika, kita sering menggambar sumbu koordinat untuk menyatakan kedudukan/posisi, jarak, perpindahan atau suatu gerakan tertentu. Biasanya titik 0 pada sumbu koordinat dipilih sebagai titik acuan. Posisi sepanjang sumbu x biasanya dianggap positif jika terletak di sebelah kanan 0 dan negatif jika terletak di sebelah kiri titik 0. Posisi sepanjang sumbu y biasanya dianggap positif jika terletak di atas titik 0 dan negatif bila terletak di bawah titik 0 (Ini hanya merupakan kesepakatan).

Karena ayah memulai perjalanan dari rumah maka kita menganggap rumah merupakan titik acuan. Dalam sumbu koordinat, posisi rumah diwakili oleh titik 0 pada sumbu koordinat. Sesuai dengan arah mata angin, arah utara dianggap sejajar dengan sumbu y positif, arah timur sejajar dengan sumbu x positif, arah selatan sejajar dengan sumbu y negatif, arah barat sejajar dengan sumbu x negatif (lihat gambar di atas).

Salah satu hal yang penting dalam menggambar sumbu koordinat adalah penentuan skala. Anda dapat memiliki skala sesuai dengan selera, tetapi perlu digambarkan secara jelas pada sumbu koordinat.

Sebuah sepeda motor bergerak ke arah timur sejauh 50 meter. Tentukan jarak dan perpindahan total yang dilalui sepeda motor…

Jarak termasuk besaran skalar (besaran skalar = besaran fisika yang hanya mempunyai besar saja. Besaran skalar tidak mempunyai arah). Arah tidak turut mempengaruhi nilai jarak… Jarak total yang ditempuh sepeda motor = 50 meter

Perpindahan termasuk besaran vektor (besaran vektor = besaran fisika yang mempunyai besar dan arah). Karena termasuk besaran vektor maka arah turut mempengaruhi nilai perpindahan. Perpindahan total yang ditempuh sepeda motor = 50 meter. Arah vektor perpindahan adalah ke timur.

Perhatikan bahwa pada contoh ini jarak = besar perpindahan = 50 meter. Apakah jarak selalu sama dengan besar perpindahan ? cermati contoh soal selanjutnya…

Sebuah sepeda motor bergerak ke arah timur sejauh 100 meter lalu berbalik ke barat sejauh 50 meter. Tentukan jarak total dan perpindahan total yang ditempuh sepeda motor…

Jarak total = 100 m + 50 m = 150 meter

Besar perpindahan total = 100 m – 50 m = 50 meter (perubahan posisi hanya sejauh 50 meter dari posisi awal). Karena perpindahan termasuk besaran vektor maka kita harus menyebutkan arahnya. Arah vektor perpindahan adalah ke timur atau searah sumbu x positif. Vektor perpindahan diwakili oleh tanda panah berwarna biru.

Perhatikan bahwa pada contoh ini jarak tidak sama dengan besar perpindahan… Jarak = 150 meter, sedangkan besar perpindahan = 50 meter.

Sebuah mobil bergerak ke arah utara sejauh 50 meter dan berbalik ke arah selatan sejauh 50 meter. Tentukan jarak total dan perpindahan total yang ditempuh mobil tersebut…

Jarak total = 50 m + 50 m = 100 meter

Bagaimana dengan perpindahan ?

Besar perpindahan total = 50 m – 50 m = 0. Mobil tidak melakukan perpindahan, karena kedudukan atau posisi akhir sama dengan kedudukan atau posisi awal.

Sebuah pesawat, terbang ke arah timur sejauh 400 meter lalu berbelok arah ke utara sejauh 300 meter. Tentukan jarak total dan perpindahan total yang ditempuh pesawat…

Jarak total = 400 m + 300 m = 700 meter

Perpindahan ?

Soal ini tidak seperti soal sebelumnya… kita tidak asal menjumlahkan atau mengurangkan, karena vektor perpindahan tidak segaris. Untuk menghitung besar perpindahan, kita bisa menggunakan rumus phytagoras.

Besar vektor perpindahan = 500 meter. Arah vektor perpindahan bisa ditentukan menggunakan rumus tangen :

Arah vektor perpindahan adalah 30o terhadap sumbu x positif. Perhatikan gambar di atas… vektor perpindahan diwakili oleh gambar berwarna biru…

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan),Jakarta : Penerbit Erlangga

sumber : http://www.gurumuda.com/jarak-perpindahan-titik-acuan-kedudukan

Pembuatan Sifat dan Paduan Aluminium


Aluminium merupakan unsur yang tergolong melimpah di kulit bumi. Mineral yang menjadi sumber komersial aluminium adalah bauksit. Bauksit mengandung aluminium dalam bentuk aluminium oksida (Al2O3). Pengolahan aluminium menjadi aluminium murni dapat dilakukan melalui dua tahap yaitu:
- Tahap pemurnian bauksit sehingga diperoleh aluminium oksida murni (alumina)
- Tahap peleburan aluminium Tahap pemurnian bauksit dilakukan untuk menghilangkan pengotor utama dalam bauksit. Pengotor utama bauksit biasanya terdiri dari SiO2, Fe2O3, dan TiO2. Caranya adalah dengan melarutkan bauksit dalam larutan natrium hidroksida (NaOH),


Al2O3 (s) + 2NaOH (aq) + 3H2O(l) ---> 2NaAl(OH)4(aq)

Aluminium oksida larut dalam NaOH sedangkan pengotornya tidak larut. Pengotor-pengotor dapat dipisahkan melalui proses penyaringan. Selanjutnya aluminium diendapkan dari filtratnya dengan cara mengalirkan gas CO2 dan pengenceran.

2NaAl(OH)4(aq) + CO2(g) ---> 2Al(OH)3(s) + Na2CO3(aq) + H2O(l)

Endapan aluminium hidroksida disaring,dikeringkan lalu dipanaskan sehingga diperoleh aluminium oksida murni (Al2O3)

2Al(OH)3(s) ---> Al2O3(s) + 3H2O(g)

Selanjutnya adalah tahap peleburan alumina dengan cara reduksi melalui proses elektrolisis menurut proses Hall-Heroult.

Dalam proses Hall-Heroult, aluminum oksida dilarutkan dalam lelehan kriolit (Na3AlF6) dalam bejana baja berlapis grafit yang sekaligus berfungsi sebagai katode. Selanjutnya elektrolisis dilakukan pada suhu 950 oC. Sebagai anode digunakan batang grafit.

Dalam proses elektrolisis dihasilkan aluminium di katode dan di anode terbentuk gas O2 dan CO2
Al2O3(l) ---> 2Al3+(l) + 3O2-(l)
Katode : Al3+(l) + 3e ---> Al(l)
Anode : 2O2-(l) ---> O2(g) + 4 e
C(s) + 2O2-(l) ---> CO2(g) + 4e

Sifat aluminium

Aluminium merupakan logam yang lembut dan ringan, dengan rupa keperakan pudar, oleh kerana kehadiran lapisan pengoksidaan yang nipis yang terbentuk apabila didedahkan kepada udara. Aluminium adalah tak bertoksik (dalam bentuk logam), tak bermagnet, dan tidak menghasilkan cucuh. Aluminium tulen mempunyai kekuatan tegangan sebanyak 49 megapascal (MPa) dan 700 MPa sekiranya dibentuk menjadi aloi.

Aluminium mempunyai ketumpatan satu pertiga daripada ketumpatan keluli atau tembaga; adalah boleh tempa, mulur, dan mudah dimesin dan ditempa; dan mempunyai daya tahan kakisan serta ketahanan yang sangat baik oleh sebab lapisan pelindung oksidanya. Kemasan cermin aluminium mempunyai kepantulan yang tertinggi antara semua logam dalam rantau 200-400 nm (Ultaungu), dan 3000-10000 nm (Inframerah jauh), sementara dalam julat penglihatan iaitu 400-700 nm ia diatasi sedikit oleh perak, dan dalam julat 700-3000 (Inframerah dekat) diatasi oleh perak, emas dan tembaga.

Paduan Aluminium

a.) Duralumin (juga disebut duraluminum, duraluminium atau dural) adalah nama dagang dari salah satu jenis paduan aluminium awal usia hardenable. Unsur paduan utama adalah tembaga, mangan, dan magnesium. Sebuah setara modern yang umum digunakan jenis ini adalah paduan AA2024, yang mengandung tembaga 4,4%, 1,5% magnesium, mangan 0,6% dan 93,5% aluminium berat. kekuatan luluh Khas adalah 450 MPa, dengan variasi tergantung pada komposisi

Daftar menggunakan khas untuk paduan Al-Cu tempa:

* 2011: Wire, batang, dan bar untuk produk mesin sekrup. Aplikasi dapat di mesin yang baik dan kekuatan yang baik diperlukan.
* 2014: Heavy-duty forging, piring, dan ekstrusi untuk fitting pesawat, roda, dan komponen struktural utama, isi tangki ruang booster dan struktur, kerangka truk dan komponen suspensi. Aplikasi yang membutuhkan kekuatan tinggi dan kekerasan termasuk layanan pada temperatur tinggi.
* 2024: Pesawat struktur, paku keling, perangkat keras, roda truk, sekrup produk mesin, dan lainnya aplikasi struktural lain-lain.
* 2036: Lembar untuk panel otomatis tubuh.
* 2048: Sheet dan piring di komponen struktural untuk aplikasi kedirgantaraan dan peralatan militer.
* 2141: Plate pada ketebalan 40 sampai 150 mm (1,6-5,9 dalam) untuk struktur pesawat.
* 2218: Forgings, pesawat dan piston mesin diesel; kepala silinder mesin pesawat udara; impeler mesin jet dan cincin kompresor.
* 2219: ruang oxidizer booster dilas dan tangki bahan bakar, kulit pesawat supersonik dan struktur komponen. Weldable mudah dan berguna untuk aplikasi selama rentang suhu -270 sampai 300 ° C (-454 sampai 572 ° F). Memiliki ketangguhan fraktur tinggi, dan marah T8 sangat tahan terhadap stress-korosi retak.
* 2618: Die dan tempa tangan. Pistons dan bagian-bagian mesin pesawat berputar untuk operasi pada temperatur tinggi. Ban cetakan.

b.) Silumin adalah serangkaian ringan, tinggi kekuatan paduan aluminium dengan kadar silikon sebesar 12%. Diantara keuntungan dari silumin adalah resistensi tinggi terhadap korosi, sehingga bermanfaat dalam lingkungan lembab. Penambahan silikon untuk aluminium juga membuat kurang kental ketika cairan, yang bersama-sama dengan biaya rendah (kedua elemen komponen relatif murah untuk mengekstrak), membuatnya menjadi paduan casting sangat bagus dan logam segar. Hal ini juga digunakan pada motor 3 fasa untuk memungkinkan peraturan kecepatan. Penggunaan lainnya adalah ruang lingkup senapan sniper tunggangan dan kamera tunggangan.

c.) Hidronallium , Paduan Al-Mg, sering disebut Hidronalium, merupakan paduan dengan tingkat ketahanan korosi yang paling baik dibandingkan dengan paduan alumunium lainnya, selain itu paduan Al-Mg 5 % merupakan no heat-treatable alloy. Sehingga dengan dilakukannya proses solution treatment 300 C menurunkan kekerasan hingga 18.06 %, kekuatan tarik 6.14 % dan regangan 41.04 %.
Sebaliknya grain refiner memperbaiki sifat mekanisnya, dimana pada kondisi as-cast meningkatkan kekerasan hingga 6.68 %, kekuatan tarik 2.06 % dan regangan 38.34 %. Pada kondisi solution treatment 300 C meningkatkan kekerasan hingga 6.78 %, kekuatan tarik 20.85 % dan regangan 11.96 %. Dan pada kondisisolution treatment 400 C meningkatkan kekerasannya hingga 16.28 % kekuatan tarik 8.44 % dan regangan hingga 25.77 %.

d.) Brass adalah paduan tembaga dan seng; proporsi seng dan tembaga dapat divariasikan untuk menciptakan berbagai kuningan dengan sifat yang berbeda-beda .Sebagai perbandingan, perunggu pada dasarnya merupakan paduan dari tembaga dan timah .Bronze tidak.. selalu mengandung timah, dan berbagai paduan tembaga, termasuk paduan dengan arsen, fosfor, aluminium, mangan, dan silikon, biasanya disebut "perunggu". Istilah ini diterapkan untuk berbagai kuningan dan perbedaan itu adalah sebagian besar sejarah. Kuningan adalah paduan substitusi.

Hal ini digunakan untuk dekorasi untuk penampilan terang seperti emas, untuk aplikasi di mana gesekan yang rendah diperlukan seperti kunci, roda gigi, bantalan, gagang pintu, amunisi, dan katup, untuk aplikasi pipa saluran air dan listrik, dan luas dalam instrumen musik seperti tanduk dan lonceng untuk properti akustik. Hal ini juga digunakan dalam ritsleting. Karena lebih lembut daripada logam lainnya di pemakaian umum, kuningan sering digunakan dalam situasi di mana adalah penting bahwa percikan tidak memukul, seperti dalam fitting dan alat-alat sekitar gas meledak.

Brass memiliki warna kuning diredam, yang agak mirip dengan emas. Hal ini relatif tahan terhadap menodai, dan sering digunakan sebagai hiasan dan untuk koin. Pada jaman dahulu, kuningan dipoles sering digunakan sebagai cermin.

e.) Bronze (perunggu) adalah paduan logam terutama terdiri atas tembaga, biasanya dengan timah sebagai aditif utama, tapi kadang-kadang dengan unsur-unsur lain seperti fosfor, mangan, alumunium, atau silikon. Sulit dan rapuh, dan itu sangat signifikan di zaman kuno, begitu banyak sehingga Bronze Age bernama setelah logam. Namun, karena "perunggu" adalah istilah yang agak tidak tepat, dan potongan sejarah mempunyai komposisi variabel, khususnya dengan batas jelas dengan kuningan, museum modern dan deskripsi ilmiah objek semakin tua menggunakan istilah lebih berhati-hati "paduan tembaga" sebagai gantinya.

Perunggu terutama cocok untuk digunakan dalam alat kelengkapan kapal dan kapal kekuatan sama dengan stainless steel karena kombinasi ketangguhan dan ketahanan terhadap korosi air garam. Perunggu masih umum digunakan di baling-baling kapal dan bantalan terendam.

Cara Menggunakan Mikroskop Yang Benar

Sebelum melakukan praktikum dengan menggunakan mikroskop cahaya maka perhatikan langkah-langkah berikut:

  1. Letakkan mikroskop di atas meja dengan cara memegang lengan mikroskop sedemikian rupa sehingga mikroskop berada persis di hadapan pemakai !


  1. Putar revolver sehingga lensa obyektif dengan perbesaran lemah berada pada posisi satu poros dengan lensa okuler yang ditandai bunyi klik pada revolver

  1. Mengatur cermin dan diafragma untuk melihat kekuatan cahaya masuk, hingga dari lensa okuler tampak terang berbentuk bulat (lapang pandang).

  1. Tempatkan preparat pada meja benda tepat pada lubang preparat dan jepit dengan penjepit obyek/benda!

  1. Aturlah fokus untuk memperjelas gambar
    obyek dengan cara memutar pemutar kasar, sambil dilihat dari lensa
    okuler.
    Untuk mempertajam putarlah pemutar halus !

  1. Apabila bayangan obyek sudah ditemukan, maka untuk memperbesar gantilah lensa obyektif dengan ukuran dari 10 X,40 X atau 100 X, dengan cara memutar revolver hingga bunyi klik.

  1. Apabila telah selesai menggunakan, bersihkan mikroskop dan simpan pada tempat yang tidak lembab.

Tentang Isaac Newton

Isaac Newton, ilmuwan paling besar dan paling berpengaruh yang pernah hidup di dunia, lahir di Woolsthrope, Inggris, tepat pada hari Natal tahun 1642, bertepatan tahun dengan wafatnya Galileo. Seperti halnya Nabi Muhammad, dia lahir sesudah ayahnya meninggal. Di masa bocah dia sudah menunjukkan kecakapan yang nyata di bidang mekanika dan teramat cekatan menggunakan tangannya. Meskipun anak dengan otak cemerlang, di sekolah tampaknya ogah-ogahan dan tidak banyak menarik perhatian. Tatkala menginjak akil baliq, ibunya mengeluarkannya dari sekolah dengan harapan anaknya bisa jadi petani yang baik. Untungnya sang ibu bisa dibujuk, bahwa bakat utamanya tidak terletak di situ. Pada umurnya delapan belas dia masuk Universitas Cambridge. Di sinilah Newton secara kilat menyerap apa yang kemudian terkenal dengan ilmu pengetahuan dan matematika dan dengan cepat pula mulai melakukan penyelidikan sendiri. Antara usia dua puluh satu dan dua puluh tujuh tahun dia sudah meletakkan dasar-dasar teori ilmu pengetahuan yang pada gilirannya kemudian mengubah dunia.

Pertengahan abad ke-17 adalah periode pembenihan ilmu pengetahuan. Penemuan teropong bintang dekat permulaan abad itu telah merombak seluruh pendapat mengenai ilmu perbintangan. Filosof Inggris Francis Bacon dan Filosof Perancis Rene Descartes kedua-duanya berseru kepada ilmuwan seluruh Eropa agar tidak lagi menyandarkan diri pada kekuasaan Aristoteles, melainkan melakukan percobaan dan penelitian atas dasar titik tolak dan keperluan sendiri. Apa yang dikemukakan oleh Bacon dan Descartes, sudah dipraktekkan oleh si hebat Galileo. Penggunaan teropong bintang, penemuan baru untuk penelitian astronomi oleh Newton telah merevolusionerkan penyelidikan bidang itu, dan yang dilakukannya di sektor mekanika telah menghasilkan apa yang kini terkenal dengan sebutan "Hukum gerak Newton" yang pertama.

Ilmuwan besar lain, seperti William Harvey, penemu ihwal peredaran darah dan Johannes Kepler penemu tata gerak planit-planit di seputar matahari, mempersembahkan informasi yang sangat mendasar bagi kalangan cendikiawan. Walau begitu, ilmu pengetahuan murni masih merupakan kegemaran para intelektual, dan masih belum dapat dibuktikan --apabila digunakan dalam teknologi-- bahwa ilmu pengetahuan dapat mengubah pola dasar kehidupan manusia sebagaimana diramalkan oleh Francis Bacon.

Walaupun Copernicus dan Galileo sudah menyepak ke pinggir beberapa anggapan ngelantur tentang pengetahuan purba dan telah menyuguhkan pengertian yang lebih genah mengenai alam semesta, namun tak ada satu pokok pikiran pun yang terumuskan dengan seksama yang mampu membelokkan tumpukan pengertian yang gurem dan tak berdasar seraya menyusunnya dalam suatu teori yang memungkinkan berkembangnya ramalan-ramalan yang lebih ilmiah. Tak lain dari Isaac Newton-lah orangnya yang sanggup menyuguhkan kumpulan teori yang terangkum rapi dan meletakkan batu pertama ilmu pengetahuan modern yang kini arusnya jadi anutan orang.

Newton sendiri agak ogah-ogahan menerbitkan dan mengumumkan penemuan-penemuannya. Gagasan dasar sudah disusunnya jauh sebelum tahun 1669 tetapi banyak teori-teorinya baru diketahui publik bertahun-tahun sesudahnya. Penerbitan pertama penemuannya adalah menyangkut penjungkir-balikan anggapan lama tentang hal-ihwal cahaya. Dalam serentetan percobaan yang seksama, Newton menemukan fakta bahwa apa yang lazim disebut orang "cahaya putih" sebenarnya tak lain dari campuran semua warna yang terkandung dalam pelangi. Dan ia pun dengan sangat hati-hati melakukan analisa tentang akibat-akibat hukum pemantulan dan pembiasan cahaya. Berpegang pada hukum ini dia --pada tahun 1668-- merancang dan sekaligus membangun teropong refleksi pertama, model teropong yang dipergunakan oleh sebagian terbesar penyelidik bintang-kemintang saat ini. Penemuan ini, berbarengan dengan hasil-hasil yang diperolehnya di bidang percobaan optik yang sudah diperagakannya, dipersembahkan olehnya kepada lembaga peneliti kerajaan Inggris tatkala ia berumur dua puluh sembilan tahun.

Keberhasilan Newton di bidang optik saja mungkin sudah memadai untuk mendudukkan Newton pada urutan daftar buku ini. Sementara itu masih ada penemuan-penemuan yang kurang penting di bidang matematika murni dan di bidang mekanika. Persembahan terbesarnya di bidang matematika adalah penemuannya tentang "kalkulus integral" yang mungkin dipecahkannya tatkala ia berumur dua puluh tiga atau dua puluh empat tahun. Penemuan ini merupakan hasil karya terpenting di bidang matematika modern. Bukan semata bagaikan benih yang daripadanya tumbuh teori matematika modern, tetapi juga perabot tak terelakkan yang tanpa penemuannya itu kemajuan pengetahuan modern yang datang menyusul merupakan hal yang mustahil. Biarpun Newton tidak berbuat sesuatu apapun lagi, penemuan "kalkulus integral"-nya saja sudah memadai untuk menuntunnya ke tangga tinggi dalam daftar urutan buku ini.

Tetapi penemuan-penemuan Newton yang terpenting adalah di bidang mekanika, pengetahuan sekitar bergeraknya sesuatu benda. Galileo merupakan penemu pertama hukum yang melukiskan gerak sesuatu obyek apabila tidak dipengaruhi oleh kekuatan luar. Tentu saja pada dasarnya semua obyek dipengaruhi oleh kekuatan luar dan persoalan yang paling penting dalam ihwal mekanik adalah bagaimana obyek bergerak dalam keadaan itu. Masalah ini dipecahkan oleh Newton dalam hukum geraknya yang kedua dan termasyhur dan dapat dianggap sebagai hukum fisika klasik yang paling utama. Hukum kedua (secara matcmatik dijabarkan dcngan persamaan F = m.a) menetapkan bahwa akselerasi obyek adalah sama dengan gaya netto dibagi massa benda. Terhadap kedua hukum itu Newton menambah hukum ketiganya yang masyhur tentang gerak (menegaskan bahwa pada tiap aksi, misalnya kekuatan fisik, terdapat reaksi yang sama dengan yang bertentangan) serta yang paling termasyhur penemuannya tentang kaidah ilmiah hukum gaya berat universal. Keempat perangkat hukum ini, jika digabungkan, akan membentuk suatu kesatuan sistem yang berlaku buat seluruh makro sistem mekanika, mulai dari pergoyangan pendulum hingga gerak planit-planit dalam orbitnya mengelilingi matahari yang dapat diawasi dan gerak-geriknya dapat diramalkan. Newton tidak cuma menetapkan hukum-hukum mekanika, tetapi dia sendiri juga menggunakan alat kalkulus matematik, dan menunjukkan bahwa rumus-rumus fundamental ini dapat dipergunakan bagi pemecahan problem.

Hukum Newton dapat dan sudah dipergunakan dalam skala luas bidang ilmiah serta bidang perancangan pelbagai peralatan teknis. Dalam masa hidupnya, pemraktekan yang paling dramatis adalah di bidang astronomi. Di sektor ini pun Newton berdiri paling depan. Tahun 1678 Newton menerbitkan buku karyanya yang masyhur Prinsip-prinsip matematika mengenai filsafat alamiah (biasanya diringkas Principia saja). Dalam buku itu Newton mengemukakan teorinya tentang hukum gaya berat dan tentang hukum gerak. Dia menunjukkan bagaimana hukum-hukum itu dapat dipergunakan untuk memperkirakan secara tepat gerakan-gerakan planit-planit seputar sang matahari. Persoalan utama gerak-gerik astronomi adalah bagaimana memperkirakan posisi yang tepat dan gerakan bintang-kemintang serta planit-planit, dengan demikian terpecahkan sepenuhnya oleh Newton hanya dengan sekali sambar. Atas karya-karyanya itu Newton sering dianggap seorang astronom terbesar dari semua yang terbesar.

Apa penilaian kita terhadap arti penting keilmiahan Newton? Apabila kita buka-buka indeks ensiklopedia ilmu pengetahuan, kita akan jumpai ihwal menyangkut Newton beserta hukum-hukum dan penemuan-penemuannya dua atau tiga kali lebih banyak jumlahnya dibanding ihwal ilmuwan yang manapun juga. Kata cendikiawan besar Leibniz yang sama sekali tidak dekat dengan Newton bahkan pernah terlibat dalam suatu pertengkaran sengit: "Dari semua hal yang menyangkut matematika dari mulai dunia berkembang hingga adanya Newton, orang itulah yang memberikan sumbangan terbaik." Juga pujian diberikan oleh sarjana besar Perancis, Laplace: "Buku Principia Newton berada jauh di atas semua produk manusia genius yang ada di dunia." Dan Langrange sering menyatakan bahwa Newton adalah genius terbesar yang pernah hidup. Sedangkan Ernst Mach dalam tulisannya di tahun 1901 berkata, "Semua masalah matematika yang sudah terpecahkan sejak masa hidupnya merupakan dasar perkembangan mekanika berdasar atas hukum-hukum Newton." Ini mungkin merupakan penemuan besar Newton yang paling ruwet: dia menemukan wadah pemisahan antara fakta dan hukum, mampu melukiskan beberapa keajaiban namun tidak banyak menolong untuk melakukan dugaan-dugaan; dia mewariskan kepada kita rangkaian kesatuan hukum-hukum yang mampu dipergunakan buat permasalahan fisika dalam ruang lingkup rahasia yang teramat luas dan mengandung kemungkinan untuk melakukan dugaan-dugaan yang tepat.


Newton sedang menganalisa garis cahaya

Dalam uraian yang begini ringkas, adalah mustahil membeberkan secara terperinci penemuan-penemuan Newton. Akibatnya, banyak karya-karya yang agak kurang tenar terpaksa harus disisihkan biarpun punya makna penting di segi penemuan dalam bidang masalahnya sendiri. Newton juga memberi sumbangsih besar di bidang thermodinamika (penyelidikan tentang panas) dan di bidang akustik (ilmu tentang suara). Dan dia pulalah yang menyuguhkan penjelasan yang jernih bagai kristal prinsip-prinsip fisika tentang "pengawetan" jumlah gerak agar tidak terbuang serta "pengawetan" jumlah gerak sesuatu yang bersudut. Antrian penemuan ini kalau mau bisa diperpanjang lagi: Newtonlah orang yang menemukan dalil binomial dalam matematika yang amat logis dan dapat dipertanggungjawabkan. Mau tambah lagi? Dia juga, tak lain tak bukan, orang pertama yang mengutarakan secara meyakinkan ihwal asal mula bintang-bintang.

Nah, sekarang soalnya begini: taruhlah Newton itu ilmuwan yang paling jempol dari semua ilmuwan yang pernah hidup di bumi. Paling kemilau bagaikan batu zamrud di tengah tumpukan batu kali. Taruhlah begitu. Tetapi, bisa saja ada orang yang mempertanyakan alasan apa menempatkan Newton di atas pentolan politikus raksasa seperti Alexander Yang Agung atau George Wasington, serta disebut duluan ketimbang tokoh-tokoh agama besar seperti Nabi Isa atau Budha Gautama. Kenapa mesti begitu?

Pertimbangan saya begini. Memang betul perubahan-perubahan politik itu penting kalau tidak teramat penting. Walau begitu, bagaimanapun juga pada umumnya manusia sebagaian terbesar hidup nyaris tak banyak beda antara mereka di jaman lima ratus tahun sesudah Alexander wafat dengan mereka di jaman lima ratus sebelum Alexander muncul dari rahim ibunya. Dengan kata lain, cara manusia hidup di tahun 1500 sesudah Masehi boleh dibilang serupa dengan cara hidup buyut bin buyut bin buyut mereka di tahun 1500 sebelum Masehi. Sekarang, tengoklah dari sudut perkembangan ilmu pengetahuan. Dalam lima abad terakhir, berkat penemuan-penemuan ilmiah modern, cara hidup manusia sehari-hari sudah mengalami revolusi besar. Cara berbusana beda, cara makan beda, cara kerja dan ragamnya beda. Bahkan, cara hidup santai berleha-leha pun sama sekali tidak mirip dengan apa yang diperbuat orang jaman tahun 1500 sesudah Masehi. Penemuan ilmiah bukan saja sudah merevolusionerkan teknologi dan ekonomi, tetapi juga sudah mengubah total segi politik, pemikiran keagamaan, seni dan falsafah. Sangat langkalah aspek kehidupan manusia yang tetap "jongkok di tempat" tak beringsut sejengkal pun dengan adanya revolusi ilmiah. Alasan ini --sekali lagi alasan ini-- yang jadi sebab mengapa begitu banyak ilmuwan dan penemu gagasan baru tercantum di dalam daftar buku ini. Newton bukan semata yang paling cerdas otak diantara barisan cerdas otak, tetapi sekaligus dia tokoh yang paling berpengaruh di dalam perkembangan teori ilmu. Itu sebabnya dia peroleh kehormatan untuk didudukkan dalam urutan hampir teratas dari sekian banyak manusia yang paling berpengaruh dalam sejarah manusia. Newton menghembuskan nafas penghabisan tahun 1727, dikebumikan di Westminster Abbey, ilmuwan pertama yang memperoleh penghormatan macam itu.

sumber : http://luk.staff.ugm.ac.id/kmi/iptek/100/Newton.html

Teori Relativitas Einstein


Teori Relativitas Einstein adalah teori yang sangat terkenal, tetapi sangat sedikit yang kita pahami. Utamanya, teori relativitas ini merujuk pada dua elemen berbeda yang bersatu ke dalam sebuah teori yang sama: relativitas umum dan relativitas khusus. Theori relativtas khusus telah diperkenalkan dulu, dan kemudian berdasar atas kasus-kasus yang lebih luas diperkenalkan teori relativitas umum.

Konsep teori relativitas

  • Teori relativitas khusus Einstein-tingkah laku benda yang terlokalisasi dalam kerangka acuan inersia, umumnya hanya berlaku pada kecepatan yang mendekati kecepatan cahaya.
    • Transforasi Lorentz-persamaan transformasi yang digunakan untuk menghitung perubahan koordinat benda pada kasus relativitas khusus.
    • Teori relativitas umum Einstein-Teori yang lebih luas, dengan memasukkan graviti sebagai fenomena geometris dalam sistem koordinat ruang dan waktu yang melengkung, juga dimasukkan kerangka acuan non inersia (misalnya, percepatan).
    • Prinsip relativitas fundamental.

Apakah relativitas itu?

Relativitas klasik (yang diperkenalkan pertama kali oleh Galileo Galilei dan didefinisikan ulang oleh Sir Isaac Newton) mencakup transformasi sederhana diantara benda yang bergerak dan seorang pengamat pada kerangka acuan lain yang diam (inersia). Jika kamu berjalan di dalam sebuah kereta yang bergerak, dan seseorang yang diam diatas tanah (di luar kereta) memperhatikanmu, kecepatanmu relatif terhadap pengamat adalah total dari kecepatanmu bergerak relatif terhadap kereta dengan kecepatan kereta relatif terhadap pengamat. Jika kamu berada dalam kerangka acuan diam, dan kereta (dan seseorang yang duduk dalam kereta) berada dalam kerangka acuan lain, maka pengamat adalah orang yang duduk dalam kereta tersebut.

Permasalahan dengan relatifitas ini terjadi ketika diaplikasikan pada cahaya, pada akhir 1800-an, untuk merambatkan gelombang melalui alam semesta terdapat substansi yang dikenal dengan eter, yang mempunyai kerangka acuan(sama seperti pada kereta pada contoh di atas). Eksperimen Michelson-Morley, bagaimanapun juga telah gagal untuk mendeteksi gerak bumi relatif terhadap eter, dan tak ada seorangpun yang bisa menjelaskan fenomena ini. Ada sesuatu yang salah dalam interpretasi klasik dari relatifitas jika diaplikasikan pada cahaya…dan kemudian muncullah pemahaman baru yang lebih matang setelah Einstein datang untuk menjelaskan fenomena ini.

Pengenalan tentang relativitas khusus

Pada tahun 1905, albert eintein mempubilkasikan (bersama dengan makalah lainnya) makalah yang berjudul, “On the Electrodynamics of Moving Bodies” atau dalam bahasa indonesianya kurang lebih demikian,”Elektrodinamika benda bergerak” dalam jurnal Annalen der physik. Makalah yang menyajikan teori relativitas khusus, berdasarkan dua postulat utama:

Postulat Einstein

Prinsip relativtas (pestulat pertama): Hukum-hukum fisika adalah sma untuk setiap kerangka acuan

Prinsip kekonstanan kecepatan cahaya (postulat kedua): Cahaya dapat merambat dalam vakum (misalnya, ruang vakum, atau “ruang bebas”), kecepatan cahaya dinotasikan dengan c, yang konstan terhadap gerak benda yang meiliki radiasi.

sebenarnya, makalah tersebut menyajikan lebih formal, formulasi matematika dari postulat tersebut. Bentuk dari postulat mungkin sedikit berbeda dari buku teks yang satu dengan yang lain karena translasi dari bentuk matematika Jerman dengan bentuk Inggris yang selama ini sering kita lihat.

Postulat kedua sering ditulis sembarangan dengan memasukkan bahwa kecepatan cahaya dalam ruang hampa adalah c untuk setiap kerangka acuan. Sebenarnya postulat ini adalah berasal dari dua postulat, bukan dari postulat kedua itu sendiri.

Postulat pertama kelihatan lebih masuk akal, tetapi bagaimanapun juga postulat kedua merupakan revolusi besar dalam ilmu fisika. Einstein sudah memperkenalkan teori foton cahaya dalam makalahnya pada efek fotolistrik (yang menghasilkan kesimpulan ketidakperluan eter). Postulat kedua, adalah sebuah konsekuensi dari foton yang tak bermassa bergerak dengan kecepatan c pada ruang hampa. Eter tidak lagi memiliki peran khusus sebagai kerangka acuan inersia “mutlak” alam semesta, jadi bukan hanya tidak perlu, tetapi juga secara kualitatif tidak berguna di dalam relativitas khusus.

Adapun makalah tersebut adalah untuk menggabungkan persamaan Maxwell untuk listrik dan magnet dengan gerak elektron dengan kecepatan mendekati kecepatan cahaya. Hasil dari makalah Einstein adalah memperkenalkan transformasi koordinat baru, dinamakan transformasi Lorentz, antara kerangka acuan inersia. Pada kecepatan lambat, transformasi ini pada dasarnya identik dengan moel klasik, untuk kecepetan yang mendekati kecepatan cahaya, menghasilkan nilai yang berbeda secara radikal.

Efek dari Relativitas Khusus

  • Relativitas khusus menghasilkan beberapa konsekuensi dari penggunaan transformasi Lorentz pada kecepatan tinggi (mendekati kecepatan cahaya). Diantaranya adalah :
  • Dilatasi waktu (termasuk “paradok kembar” yang terkenal)
  • Konstraksi panjang
  • Transformasi kecepatan
  • Efek doppler relativistk
  • Simultanitas dan sinkronisasi waktu
  • Momentum relativistik
  • Energi kinetik relativistik
  • Massa relativistik
  • Energi total relativistik

Selain itu, manipulasi aljabar sederhana dari konsep-konsep di atas menghasilkan dua hasil signifikan yang pantas dijelaskan sendiri.

Hubungan Massa-Energi

Enstein mampu menunjukkan bahwa terdapat hubungan antara massa dan energi, melalui rumus yang sangat terkenal E=mc2. Hubungan ini telah dibuktikan dengan peristiwa yang sangat dramatis di dunia, ketika bom nuklir melepaskan energi dari massa di Hiroshima dan Nagasaki pada akhir perang dunia kedua.

Kecepatan Cahaya

Tak ada objek bermassa yang dapat bergerak dipercepat menuju kecepatan cahaya. Hanya objek tak bermassa, seperti foton, yang dapat bergerak dengan kecepatan cahaya. (foton tidak bergerak dipercepat menuju kecepatan cahaya, tetapi foton selalu bergerak dengan kecapatan cahaya).

Tetapi bagi objek fisis, kecepatan cahaya adalah terbatas. Energi kinetik pada kecepatan cahaya menjadi tak terbatas, jadi tidak pernah dapat dicapai dengan percepatan.

Beberapa telah menunjukkan bahwa sebuah objek secara teori dapat bergerak melebihi kecepatan cahaya, tetapi sejauh ini tidak ada entitas fisik yang dapat menujukkan itu.

Adopsi Relativitas Khusus

Pada 1908, Max Plank mengaplikasikan bentuk “teori relativitas” untuk menjelaskan konsep relativitas khusus, karena aturan kunci dari relativitas memainkan peran dalam konsep tersebut. Pada waktu itu, tentunya bentuk yang diaplikasikan hanya pada relativitas khusus, karena memang belum terdapat relativitas umum.

Relativitas Einstein tidak segera diterima oleh fisikawan secara keseluruhan, karena kelihatan sangat teoretis dan conterintuitif. Kemudian Einstein menerima penghargaan Nobel pada 1921, khususnya penyelesaiannya untuk efek fotolistrik dan kontribusinya pada fisika teori. Tetapi Relativitas masih menjadi kontroversi untuk menjadi referensi spesifik.

Seiring berjalannya waktu, bagaimanapun juga, presiksinya terhadap relativitas khusus akhirya menjadi kenyataan. Misalkan, jam terbang di selruh dunia telah menunjukkan adanya perlambatan dengan durasi yang diprediksi oleh teori relativitas.

Albert Einstein tidak menciptakan sendiri transformasi koordinat yang dibutuhkan untuk relativitas khusus. Dia tidak harus melakukannya, karena transformasi yang dibutukan telah ada sebelumnya. Einstein menjadi seorang yang ahli dalam pekerjaannya yang terdahulu dan menyesuaikan diri pada situasi yang baru, dan juga dengan transformasi Lorentz seperti yang telah Planck gunakan pada 1900 untuk menyelesaikan permasalahan bencana ultraviolet pada radiasi benda hitam, Einstein merancang solusi untuk efek fotolistrik, dan dengan demikian dia telah mengembangkan teori foton untuk cahaya.

Asal Mula Transformasi Lorentz

Transformasi Lorentz sebenarnya pertama kali telah diperkenalkan oleh Joseph Larmor pada 1897. Versi yang sedikit berbeda telah diperkenalkan pada beberapa dekade sebelumnya oleh Woldemar Voigt, tetapi versinya memiliki bentuk kuadrat pada persamaan dilatasi waktu. Tetapi, persamaan dilatasi waktu kedua versi tersebut dapat ditunjukkan sebagai invarian dalam persamaan Maxwell.

Seorang Matematikawan dan fisikawan Hendrik Antoon Lorentz mengusulkan gagasan “waktu lokal” untuk menjelaskan relatif simultanitas pada 1895, walaupun dia juga bekerja secara terpisah pada transformasi yang sama untuk menjelaskan hasil “nol” pada percobaan Michelson dan Morley. Dia mengenalkan transformasi koordinatnya pada 1899, dan menambahkan dilatasi waktu pada 1904.

Pada 1905, Henri Poincare memodifikasi formulasi aljabar dan menyumbangkannya kepada Lorentz dengan nama “Transformasi Lorentz,” formulasi Poincare pada transformasi tersebut pada dasarnya identik dengan apa yang digunakan Einstein.

Transformasi Lorentz tersebut menggunakan sistem koordinat empat dimensi, yaitu tiga koordinat ruang (x, y, dan z) dan satu koordinat waktu (t). Koordinat baru ditandai dengan tanda apostrof diucapkan “abstain,” seperti x’ dibaca “x-abstain.” Pada contoh dibawah ini, kecepatan adalah dalam arah x’, dengan besar u:

x’=(x-ut)/√(1-u2/c2 )

y’=y

z’=z

t’={t-(u/c^2 )x}/√(1-u2/c2)

Transformasi tersebut hanya untuk demonstrasi. Aplikasi dari persamaan tersebut akan ditangani secara terpisah. Bentuk √((1-u2/c2) sering muncul dalam relativitas sehingga dilambangkan dengan simbol yunani γ (dibaca gamma) dalam beberapa penyajian.

Perlu diingat bahwa pada kasus u << style="font-size: 11px; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; line-height: 1.4em; ">2/c2 akan menjadi sangat kecil sehingga di dalam bentuk akar akan menghasilkan nilai satu, maka nilai γ akan menjadi satu. Oleh karena itu, dilatasi ruang dan waktu menjadi sangat tidak berpengaruh untuk benda yang bergerak jauh dibawah kecepatan cahaya.

Konsekuensi dari Transformasi Lorentz

Relativitas khusus menghasilkan beberapa konsekuensi dari penggunaan Transformasi Lorentz pada kecepatan tinggi (mendekati kecepatan cahaya). Diantaranya adalah :

  • Dilatasi waktu (termasuk “paradok kembar” yang terkenal)
  • Konstraksi panjang
  • Transformasi kecepatan
  • Efek doppler relativistk
  • Simultanitas dan sinkronisasi waktu
  • Momentum relativistik
  • Energi kinetik relativistik
  • Massa relativistik
  • Energi total relativistik

Kontroversi Lorenz dan Einstein

Beberapa orang mengatakan bahwa sebenarnya sebagian besar pekerjaan dari relativitas khusus yang telah dikerjakan einstein telah ada dalam transformasi Lorentz. Konsep dilatasi dan simultanitas untuk pergerakan benda telah disebutkan dan secara matematis telah dikembangkan oleh Lorentz dan Poincare. Beberapa orang mengganggap bahwa Einstein adalah seorang plagiator.

Tentunya terdapat validitas untuk tuduhan tersebut. Tentu saja, revolusi besar Einstein dibangun berdasarkan pekerjaan-pekerjaan orang lain, dan Einstein mendapatkan banyak hasil atas apa yang telah mereka hasilkan secara kasar.

Pada waktu yang sama, tetapi harus dipertimbankan bahwa Einstein mengambi konsep-konsep dasar ini dan memebangunnya menjadi sebuah kerangka teori yang menjadikan konsep-konsep tersebut untuk bukan hanya sekedar trik matematis untuk menyelamatkan dying teori (teori sekarat) seperti teori eter, melainkan menggunakan aspek-aspek fundamental alam pada tempatnya. Terdapat ketidakjelasan bahwa Larmor, Lorentz, atau Poincare yang dimaksudkan agar berani bergerak, namun sejaraha telah memberikan penghargaan kepada Einstein atas wawasan dan keberainannya.

Pada 1905, Teori Einstein (relativitas khusus), dia menunujukkan bahwa diantara kerangka acuan inersia tidak terdapat kerangka acuan “utama.” Perkembangan dari relativitas umum terjadi, sebagian sebagai upaya untuk menunjukkan bahwa ini benar di antara non-inersia (yaitu mempercepat) kerangka acuan juga.

Evolusi Relativitas Umum

Pada 1907, Einstein mempublikasikan artikelnya yang pertama pada Efek gravitasi pada cahaya dibawah relativitas khusus. Pada makalah tesebut, Einstein menguraikan “prinsip ekuivalensi,” yang menyatakan bahwa pengamatan pada percobaan di bumi (dengan percepatan gravitasi g) akan identik dengan pengamatan pada percobaan dalam roket yang bergerak dengan kecepatan g. Prinsip ekuivalensi tersebut diformulasikan sebagai:

we [...] assume the complete physical equivalence of a gravitational field and a corresponding acceleration of the reference system.

Yang artinya kurang lebih demikian :

Kami [...] mengasumsikan kesetaraan fisis lengkap dari medan gravitasi dan hubungannya dengan percepatan dari sistem kerangka acuan.

Seperti yang dikatakan Einstein atau pada buku Fisika Modern:

There is no local experiment that can be done to distinguish between the effects of a uniform gravitational field in a nonaccelerating inertial frame and the effects of a uniformly accelerating (noninertial) reference frame.

Atau dalam bahasa indonesia kurang lebih demikian :

Tidak ada percobaaan lokal yang dapat dilakukan untuk membedakan antara efek dari medan gravitasi seragam dalam kerangka acuan yang tidak dipercepat dan efek dari percepatan seragam (tidak inersia) kerangka acuan.

Artikel kedua pada subjek muncul pada tahun 1911, dan 1912 Einstein secara aktif bekerja untuk memahami sebuah teori relativitas umum yang bisa menjelaskan relativitas khusus, tetapi juga akan menjelaskan gravitasi sebagai fenomena geometris.

Pada tahun 1915, Einstein menerbitkan serangkaian persamaan diferensial yang dikenal sebagai persamaan medan Einstein. Relativitas umum Einstein menggambarkan alam semesta sebagai suatu sistem geometris tiga ruang dan satu dimensi waktu. Kehadiran massa, energi, dan momentum (kuantutasi secara kolektif sebagai kepadatan massa-energi atau tekanan-energi) yang dihasilkan dalam tekukan sistem koordinat ruang-waktu. Gravitasi, oleh karena itu, merupakan sebuah pergerakan sepanjang “sederhana” atau paling tidak rute energetik sepanjang lengkungan ruang-waktu.

Bentuk Matematika Dari Relativitas Umum

Pada bentuk yang sederhana, dan menghilangan matematika yang kompleks, Einstein menemukan hubungan antara kelengkungan ruang-waktu dengan kerapatan massa-energi:

(Kelengkungan ruang-waktu) = (kerapatan massa-energi)*8µG/c4

Persamaan tersebut menunjukkan hubungan secara langsung, proporsional terhadap kontanta. Kontanta gravitasi G, berasal dari hukum Newton untuk gravitasi, sementara ketergantungan terhadap kecepatan cahaya, c, adalah berasal dari teori relativitas khusus. Dalam kasus nol (atau mendekati nol) (yaitu ruang hampa), ruang-waktu berbentuk datar. Gravitasi klasik adalah kasus khusus untuk manifestasi gravitasi pada medan gravitasi lemah, dimana bentuk c4 (denominator yang sangat besar) dan G (nilai yang sangat kecil) membuat koreksi kelengkungan kecil.

Sekali lagi, Einstein tidak tidak keluar dari topik. Dia bekerja keras dengan geometri Riemannian (geometri non Euclidean yang dikembangkan oleh matematikawan Bernhard Riemann beberapa tahun sebelumnya), meskipun ruang yang dihasilkan adalah 4 dimensi Lorentzian bermacam-macam daripada geometri Riemann ketat. Namun, karya Riemann sangat penting bagi persamaan medan Einstein.

Apakah sebenarnya Relativitas Umum?

Untuk analogi relativitas umum, pertimbangkan bahwa kamu membentangkan sebuah seprai atau suatu lembaran yang datar dan elastik. Sekarang kamu meletakkan sesuatu dengan berat yang bervariasi pada lembaran tersebut. Jika kita menempatkan sesuatu yang sangat ringan maka bentuk seprai akan sedikit lebih turun sesuai dengan berat benda tersebut. Tetaoi jika kamu meletakkan sesuatu yang berat, maka akan terjadi kelengkungan yang lebih besar.

Asumsikan terdapat benda yang berat berada pada lembaran tersebut, dan kamu meletakkan benda lain yang lebih ringan di dekatnya. Kelengkungan yang diciptakan oleh benda yang lebih berat akan menyebabkan benda yang lebih ringan “terpeleset” disepanjang kurva ke arah kurva tersebut, karena benda yang lebih ringan mencoba untuk mencapai keseimbangan sampai pada akhirnya benda tersebut tidak bergerak lagi (dalam kasus ini, tentu saja terdapat pertimbangan lain, misalnya bentuk dari benda tersebut, sebuah bola akan menggelinding, sedangkan kubus akan terperosot, karena pengaruh gesekan atau semacamnya).

Hal ini serupa dengan bagaimana relativitas umum menjelaskan gravitasi. Kelengkungan dari cahaya bukan karena beratnya, tetapi kelengkungan yang diciptakan oleh benda berat lain yang membuat kita tetap melayang di luar angkasa. Kelengkungan yang diciptakan oleh bumi membuat bulan tetap bergerak sesuai dengan orbitnya, tetapi pada waktu yang sama, kelengkungan yang diciptakan bulan cukup untuk mempengaruhi pasang surut air laut.

Pembuktian Relativitas Umum

Semua temuan-temuan relativitas khusus juga mendukung relativitas umum, karena teori-teori ini adalah konsisten. Relativitas umum juga menjelaskan semua fenomena-fenomena mekanika klasik, yang juga konsisten. Selain itu, beberapa temuan mendukung prediksi unik dari relaivitas umum:

  • Presisi dari perihelion Merkurius
  • Pembelokan gravitasi cahaya bintang
  • Pelebaran alam semesta (dalam bentuk konstanta kosmologis)
  • Delay dari gema radar
  • Radiasi Hawking dari black hole

Prinsip-Prinsip Fundamental dari Relativitas

  • Prinsip umum relativitas: Hukum-hukum fisika harus sama untuk setiap pengamat, terlepas dari mereka dipercepat atau tidak.
  • Prinsip kovarian umum: hukum-hukum fisika harus memiliki bentuk yang sama dalam semua sistem koordinat.
  • Gerak Inersia adalah gerak geodesik: Garis dunia dari partikel yang tidak terpengarus oleh gaya-gaya (yaitu gerak inersia) adalah bakal waktu atau null geodesik dari ruang waktu. (ini berarti tangen vektornya negatif atau nol.)
  • Invarian lokal Lorentz: aturan-aturan dari relativitas khusus diaplikasikan secara lokal untuk semua pengamat inersia.
  • Lengkungan ruang-waktu: seperti yang dijelaskan oleh persamaan medan Einstein, lengkungan ruang dan waktu, sebagai responnya terhadap massa, energi, dan momentum menghasilkan pengaruh gravitasional yang dilihat sebagai bentuk gerak inersia.

Prinsip ekuivalensi, di mana Albert Einstein menggunakannya sebagai titik awal untuk relativitas umum, membuktikan konsekuensinya terhadap prinsip-prinsip tersebut.

Relativitas Umum dan Konstanta Kosmologis

Pada 1922, para ilmuwan menemukan bahwa aplikasi dari persamaan medan Einstein pada bidang kosmologi menghasilkan perluasan alam semesta. Einstein percaya bahwa alam semesta itu statis (dan karena itu pemikiran persamaannya menjadi salah), penambahan konstanta kosmologis pada persamaan medan, yang memungkinkan hasil statis.

Edwin Hubble, pada 1929, menemukan bahwa terdapat pergesaranmerah dari bintang-bintang jauh, yang menyiratkan bahwa bintang-bintang itu bergerak terhadap bumi. Alam semesta tampaknya berkembang. Einstein menghilangkan kontanta kosmologis dari persamaannya dan menyebutnya sebagai kesalahan terbesar dalam karirnya.

Pada 1990, ketertarikan pada konstanta kosmologis kembali ada dalam bentuk dark energy. Solusi untuk teori medan kuantum telah menghasilkan sejumlah besar energi dalam ruang hampa kuantum yang berakibat pada percepatan perluasan alam semesta.

Relativitas Umum dan Mekanika Kuantum

Ketika para fisikawan berupaya untuk menerapkan teori medan kuantum pada medan gravitasi, hal-hal menjadi sangat kacau. Pada betuk matematis, kuantitas fisis terjadi penyimpangan, atau hasil yang tak terhingga. Medan gravitasi di bawah relativitas umum memerlukan koreksi angka tak terhingga atau “renormalisasi”, konstanta-kontanta untuk penyesaiannya ke dalam persamaan yang terpecahkan.

Upaya untuk memecahkan “masalah renormalization” terletak di jantung teori kuantum gravitasi. Teori-teori gravitasi kuantum biasanya bekerja mundur, meramalkan sebuah teori dan kemudian mengujinya dan bukan benar-benar mencoba untuk menentukan konstanta yang tak terbatas diperlukan. Ini trik lama dalam fisika, tapi sejauh ini tidak ada teori telah cukup terbukti.

Beberapa Kontrovesi Lainnya.

Masalah utama dengan relativitas umum, yang telah sebaliknya sangat sukses, adalah keseluruhan ketidaksesuaian dengan mekanika kuantum. Potongan besar teori fisika ditujukan ke arah mencoba untuk menyamakan dua konsep: pertama yang memprediksi fenomena makroskopik melintasi ruang dan kedua yang memprediksi fenomena mikroskopik, sering kali dalam ruang yang lebih kecil daripada sebuah atom.

Selain itu, ada beberapa kekawatiran Einstein yang sangat diperhatikan terhadap ruang-waktu. Apa itu ruang-waktu? Apakah hal tesebut ada secara fisik? Beberapa telah memperkirakan “busa kuantum” yang menyebar ke seluruh alam semesta. Usaha baru pada teori string (dan pada teori anakannya) menggunakan ini atau penggambaran kuantum lain dari ruang-waktu. Sebuah artikel dari majalah New Scientist meperkirakan bahwa ruang-waktu mungkin adalah sebuah superfluida kuantum dan bahwa seluruh alam semesta dapat berputas pada sumbu.

Beberapa orang telah menunjukkan bahwa jika ruang-waktu sebagai substansi fisik, itu akan bertindak sebagai kerangka acuan universal, seperti eter. Penganut Anti-relativitas sangat gembira mendengar ini, sementara yang lain melihatnya sebagai upaya non ilmiah untuk mendiskreditkan Enstein dengan membangkitkan sebuah konsep abad-mati.

Isu-isu tertentu dengan singularitas black hole, di mana lengkung ruang-waktu mendekati pada tak terhingga, juga telah menimbulkan keraguan apakah relativitas umum secara akurat dapat menggambarkan alam semesta. Sangat sulit untuk diketahui secara pasti, bagaimanapun juga, selama black hole hanya dapat dipelajari seperti saat ini.

Sampai ia berdiri sekarang, relativitas umum adalah teori yang sangat sukses tetapi sangat sulit dibayangkan dan akan merugikan banyak orang karena ketidakkonsistennya dan kontroversi sampai mucul fenomena yang sangat bertentangan dengan prediksi dari teori.

Kutipan Mengenai Relativitas

“Spacetime grips mass, telling it how to move, and mass grips spacetime, telling it how to curve” — John Archibald Wheeler.

“The theory appeared to me then, and still does, the greatest feat of human thinking about nature, the most amazing combination of philosophical penetration, physical intuition, and mathematical skill. But its connections with experience were slender. It appealed to me like a great work of art, to be enjoyed and admired from a distance.”— Max Born

sumber : http://kurniafisika.wordpress.com/2009/10/03/gambaran-umum-teori-relativitas-einstein/